Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Viruses ; 16(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38399948

RESUMO

Lumpy skin disease virus (LSDV) has recently undergone rapid spread, now being reported from more than 80 countries, affecting predominantly cattle and to a lesser extent, water buffalo. This poxvirus was previously considered to be highly host-range restricted. However, there is an increasing number of published reports on the detection of the virus from different game animal species. The virus has not only been shown to infect a wide range of game species under experimental conditions, but has also been naturally detected in oryx, giraffe, camels and gazelle. In addition, clinical lumpy skin disease has previously been described in springbok (Antidorcas marsupialis), an African antelope species, in South Africa. This report describes the characterization of lumpy skin disease virus belonging to cluster 1.2, from field samples from springbok, impala (Aepyceros melampus) and a giraffe (Giraffa camelopardalis) in South Africa using PCR, Sanger and whole genome sequencing. Most of these samples were submitted from wild animals in nature reserves or game parks, indicating that the disease is not restricted to captive-bred animals on game farms or zoological gardens. The potential role of wildlife species in the transmission and maintenance of LSDV is further discussed and requires continuing investigation, as the virus and disease may pose a serious threat to endangered species.


Assuntos
Antílopes , Girafas , Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Animais , Bovinos , Vírus da Doença Nodular Cutânea/genética , Doença Nodular Cutânea/epidemiologia , Animais Selvagens , África do Sul , Surtos de Doenças/veterinária
2.
Arch Virol ; 169(2): 23, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38193946

RESUMO

In 2018, the molecular epidemiology of lumpy skin disease in Russia was characterized by a surge in novel recombinant vaccine-like strains causing outbreaks along the southern border, spreading in an easterly direction. Currently, five distinct novel recombinant vaccine-like lineages have been described, designated as clusters 2.1 to 2.5. Based on the complete genome sequence analysis of the causative lumpy skin disease virus (Kurgan/Russia/2018), obtained from an eponymous outbreak, the genome was shown to be composed of a Neethling vaccine strain virus as the dominant parental strain and KSGPO vaccine virus as its minor parental strain. These features are similar to those of Saratov/Russia/2017 and Tyumen/Russia/2018, representing clusters 2.1 and 2.4, respectively. However, Kurgan/Russia/2018 has 16 statistically significant recombination events unique to this sequence, contributing to the phylogenetic clustering of Kurgan/Russia/2018 in yet another cluster designed cluster 2.6, based on analysis involving the complete genome sequences.


Assuntos
Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Animais , Bovinos , Vírus da Doença Nodular Cutânea/genética , Filogenia , Vacinas Sintéticas , Doença Nodular Cutânea/epidemiologia , Doença Nodular Cutânea/prevenção & controle , Surtos de Doenças
3.
Vaccine ; 42(2): 136-145, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38097459

RESUMO

The viral proteins VP1-1, VP2, VP4, VP7 and NS3, of African horse sickness virus serotype 4 (AHSV4), have previously been identified to contain CD8+ T cell epitopes. In this study, overlapping peptides spanning the entire sequences of these AHSV4 proteins were synthesized and used to map epitopes. Peripheral blood mononuclear cells (PBMC) isolated from five horses immunized with an attenuated AHSV4 were stimulated in vitro with the synthesized peptides. Various memory immune assays were used to identify the individual peptides that contain CD8+ T cell epitopes, CD4+ T cell epitopes and linear B cell epitopes. The newly discovered individual peptides of AHSV4 proteins VP1-1, VP4, VP7 and/or NS3 that contain CD8+ T cell, CD4+ T cell or linear B cell epitopes could contribute to the design and development of new generation AHS peptide-based vaccines and therapeutics.


Assuntos
Vírus da Doença Equina Africana , Doença Equina Africana , Animais , Cavalos , Epitopos de Linfócito B , Leucócitos Mononucleares , Epitopos de Linfócito T , Sorogrupo , Proteínas do Capsídeo , Peptídeos
5.
BMC Res Notes ; 16(1): 247, 2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777780

RESUMO

Lumpy skin disease (LSD) outbreaks in Southeast and South Asia are attributed to different lineages of LSD virus (LSDV). Variants belonging to the novel recombinant cluster 2.5 circulate in China and Thailand, while a Kenyan sheep and goat pox (KSGP) strain from cluster 1.1 circulates in India, Pakistan, and Bangladesh. The clusters representing these circulating strains are vastly different. However, if their distribution encroaches into each other's ranges, it will be impossible to differentiate between them due to the lack of suitable molecular tools. Thus, fit-for-purpose molecular tools are in demand to effectively and timeously diagnose and investigate the epidemiology of LSDVs in a region. These could significantly contribute to the phylogenetic delineation of LSDVs and the development of preventive measures against transboundary spillovers. This work aimed to develop a real-time polymerase chain reaction assay targeting open reading frame LW032, capable of specifically detecting KSGP-related isolates and recombinant LSDV strains containing the KSGP backbone. The analytical specificity was proven against the widest possible panel of recombinant vaccine-like LSDV strains known to date. The amplification efficiency was 91.08%, and the assay repeatability had a cycle threshold variation of 0.56-1.1 over five repetitions across three runs. This KSGP-specific assay is reliable and fast and is recommended for use in LSDV epidemiological studies where the accurate detection of KSGP genetic signatures is a priority, particularly in regions where KSGP-like and other lineages are circulating.


Assuntos
Vírus da Doença Nodular Cutânea , Infecções por Poxviridae , Bovinos , Animais , Ovinos/genética , Vírus da Doença Nodular Cutânea/genética , Quênia , Reação em Cadeia da Polimerase em Tempo Real , Filogenia , Infecções por Poxviridae/diagnóstico , Infecções por Poxviridae/epidemiologia , Infecções por Poxviridae/veterinária , Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária , Cabras/genética
6.
Pathogens ; 12(9)2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37764936

RESUMO

Since the initial report of African swine fever (ASF) in Kenya in 1921, the disease has predominantly been confined to Africa. However, in 2007, an ASF genotype II virus of unknown provenance was introduced to Georgia. This was followed by its rampant spread to 73 countries, and the disease is now a global threat to pig production, with limited effective treatment and vaccine options. Here, we investigate the origin of Georgia 2007/1 through genome sequencing of three viruses from outbreaks that predated the genotype II introduction to the Caucasus, namely Madagascar (MAD/01/1998), Mozambique (MOZ/01/2005), and Mauritius (MAU/01/2007). In addition, genome sequences were generated for viruses from East African countries historically affected by genotype II (Malawi (MAL/04/2011) and Tanzania (TAN/01/2011)) and newly invaded southern African countries (Zimbabwe (ZIM/2015) and South Africa (RSA/08/2019). Phylogenomic analyses revealed that MOZ/01/2005, MAL/04/2011, ZIM/2015 and RSA/08/2019 share a recent common ancestor with Georgia 2007/1 and that none contain the large (~550 bp) deletion in the MGT110 4L ORF observed in the MAD/01/1998, MAU/01/2007 and TAN/01/2011 isolates. Furthermore, MOZ/01/2005 and Georgia 2007/1 only differ by a single synonymous SNP in the EP402R ORF, confirming that the closest link to Georgia 2007/1 is a virus that was circulating in Mozambique in 2005.

7.
Front Vet Sci ; 10: 1180621, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601766

RESUMO

Gene editing tools have become an indispensable part of research into the fundamental aspects of cell biology. With a vast body of literature having been generated based on next generation sequencing technologies, keeping track of this ever-growing body of information remains challenging. This necessitates the translation of genomic data into tangible applications. In order to address this objective, the generated Next Generation Sequencing (NGS) data forms the basis for targeted genome editing strategies, employing known enzymes of various cellular machinery, in generating organisms with specifically selected phenotypes. This review focuses primarily on CRISPR/Cas9 technology in the context of its advantages over Zinc finger proteins (ZNF) and Transcription activator-like effector nucleases (TALEN) and meganucleases mutagenesis strategies, for use in agricultural and veterinary applications. This review will describe the application of CRISPR/Cas9 in creating modified organisms with custom-made properties, without the undesired non-targeted effects associated with virus vector vaccines and bioactive molecules produced in bacterial systems. Examples of the successful and unsuccessful applications of this technology to plants, animals and microorganisms are provided, as well as an in-depth look into possible future trends and applications in vaccine development, disease resistance and enhanced phenotypic traits will be discussed.

8.
Viruses ; 15(7)2023 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-37515297

RESUMO

Bluetongue (BT), a viral disease of ruminants, is endemic throughout South Africa, where outbreaks of different serotypes occur. The predominant serotypes can differ annually due to herd immunity provided by annual vaccinations using a live attenuated vaccine (LAV). This has led to both wild-type and vaccine strains co-circulating in the field, potentially leading to novel viral strains due to reassortment and recombination. Little is known about the molecular evolution of the virus in the field in South Africa. The purpose of this study was to investigate the genetic diversity of field strains of BTV in South Africa and to provide an initial assessment of the evolutionary processes shaping BTV genetic diversity in the field. Complete genomes of 35 field viruses belonging to 11 serotypes, collected from different regions of the country between 2011 and 2017, were sequenced. The sequences were phylogenetically analysed in relation to all the BTV sequences available from GenBank, including the LAVs and reference strains, resulting in the analyses and reassortment detection of 305 BTVs. Phylogenomic analysis indicated a geographical selection of the genome segments, irrespective of the serotype. Based on the initial assessment of the current genomic clades that circulate in South Africa, the selection for specific clades is prevalent in directing genome segment reassortment, which seems to exclude the vaccine strains and in multiple cases involves Segment-2 resulting in antigenic shift.


Assuntos
Vírus Bluetongue , Animais , Vírus Reordenados/genética , Deriva e Deslocamento Antigênicos , África do Sul/epidemiologia , Evolução Biológica
9.
Onderstepoort J Vet Res ; 90(1): e1-e14, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-37042555

RESUMO

Culicoides truuskae Labuschagne and Meiswinkel sp. n. is described and illustrated in both sexes from material collected in South Africa and Namibia. It is restricted to the xeric western margin of the subcontinent, occurring in Fynbos, Nama-Karoo and Succulent Karoo ecoregions in South Africa and Desert and Savanna ecoregions in Namibia experiencing 600 mm of rainfall annually. Culicoides truuskae sp. n. is part of the Afrotropical 'plain-wing' Culicoides in which the wing lacks a distinguishing pattern of light and dark spots; the diagnostic dark smudge that traverses wing cell r3 may result in C. truuskae sp. n. being misidentified as the sympatric but phyletically unrelated Culicoides herero (Enderlein) - (of the Similis group, subgenus Oecacta Poey). Additionally, this study is the first description of the male of C. herero. C. truuskae sp. n. and Culicoides coarctatus Clastrier and Wirth share similar characters in the male genitalia, although the two species are separable on wing pattern and female flagellum sensilla coeloconica (SCo) distribution. The breeding habitat and adult female blood-feeding preferences of C. truuskae sp. n. are not known. A maximum likelihood phylogenetic tree, using mitochondrial cytochrome c oxidase I (COI) sequence data, is provided to further clarify the relationship between C. truuskae sp. n., C. coarctatus and C. herero. Extensive light trap data, collected over 30 years, are used to map the distribution ranges of C. truuskae sp. n., C. coarctatus and C. herero in Southern Africa.Contribution: The description of this new species and the description of the male of C. herero increases our understanding of the diversity and distribution of Culicoides species in southern Africa.


Assuntos
Ceratopogonidae , Feminino , Masculino , Animais , Filogenia , África Austral , África do Sul , Namíbia
10.
Microorganisms ; 11(3)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36985215

RESUMO

African swine fever is a contagious viral disease that has been spreading through Europe and Asia since its initial report from Georgia in 2007. Due to the large genome size of the causative agent, the African swine fever virus (ASFV), the molecular epidemiology, and virus evolution are analyzed by employing different markers. Most of these markers originate from single nucleotide polymorphisms or disparities in the copy number of tandem repeat sequences observed during the comparisons of full genome sequences produced from ASFVs isolated during different outbreaks. Therefore, consistent complete genome sequencing and comparative analysis of the sequence data are important to add innovative genomic markers that contribute to the delineation of ASFV phylogeny and molecular epidemiology during active circulation in the field. In this study, the molecular markers currently employed to assess the genotype II ASFVs circulating in Europe and Asia have been outlined. The application of each of these markers to differentiate between ASFVs from related outbreaks is described to implement a guideline to their suitability for analyzing new outbreaks. These markers do not signify the complete repertoire of genomic differences between ASFVs, but will be beneficial when analyzing the first outbreaks in a new region or a large number of samples. Furthermore, new markers must be determined via complete genome sequence analyses for enabling in-depth insights into the molecular epidemiology of ASFV.

11.
Front Vet Sci ; 9: 1001426, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36337212

RESUMO

Lumpy skin disease (LSD) caused by LSD virus (LSDV), is a member of the poxvirus genus Capripoxvirus. It is classified as a notifiable disease by the World Organization for Animal Health (WOAH) based on its potential for rapid spread and global economic impact. Due to these characteristics, the mode of LSDV transmission has prompted intensive research efforts. Previous experimental studies using the virulent vaccine-derived recombinant LSDV strain Saratov/2017, demonstrated that this strain has the capacity for transmission in a vector-proof environment. This study demonstrated that a second novel recombinant vaccine-derived LSDV strain Udmurtiya/2019, can infect bulls in contact with diseased animals, in the absence of insect vectors. Bulls were housed in an insect proof animal biosafety level 3 facility, where half the animals were inoculated intravenously with the recombinant LSDV (Udmurtiya/2019), whilst the remaining five animals were mock-inoculated but kept in contact with the inoculated group. Both the infected / inoculated group (IN) and uninfected / incontact group (IC), were monitored for 41 days with continuous registration of body temperature, observations for clinical signs and collection of blood samples and nasal swabs for testing of LSDV presence using real-time PCR. Results indicated that cohabitation of animals from both groups was sufficient to transmit the virus from the IN to the IC-group, with the onset of clinical signs including pyrexia (~41°C) and classical LSD nodular skin lesions starting at 10 dpi for the IN group and 16 dpi for the IC-group. Additionally, the presence of LSDV genomes as well as anti-LSDV antibodies were detected in swabs, blood and serum samples from animals belonging to both groups. These results provides additional evidence of LSDV transmission in a controlled environment without direct contact between diseased and healthy animals, yet in the absence of vectors. Based on these observations, the question concerning a hypothetical relation between mutations in the virus genome and its mode of transmission gains more importance and requires additional investigations with direct comparisons between classical and novel recombinant LSDV strains.

12.
Front Microbiol ; 13: 978829, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36274700

RESUMO

Poxviruses are double-stranded DNA viruses with several members displaying restricted host ranges. They are genetically stable with low nucleotide mutation rates compared to other viruses, due to the poxviral high-fidelity DNA polymerase. Despite the low accumulation of mutations per replication cycle, poxvirus genomes can recombine with each other to generate genetically rearranged viruses through recombination, a process directly associated with replication and the aforementioned DNA polymerase. Orthopoxvirus replication is intimately tethered to high frequencies of homologous recombination between co-infecting viruses, duplicated sequences of the same virus, and plasmid DNA transfected into poxvirus-infected cells. Unfortunately, the effect of these genomic alterations on the cellular context for all poxviruses across the family Poxviridae remains elusive. However, emerging sequence data on currently circulating and archived poxviruses, such as the genera orthopoxviruses and capripoxviruses, display a wide degree of divergence. This genetic variability cannot be explained by clonality or genetic drift alone, but are probably a result of significant genomic alterations, such as homologous recombination, gene loss and gain, or gene duplications as the major selection forces acting on viral progeny. The objective of this review is to cross-sectionally overview the currently available findings on natural and laboratory observations of recombination in orthopoxviruses, capripoxviruses, and leporipoxviruses, as well as the possible mechanisms involved. Overall, the reviewed available evidence allows us to conclude that the current state of knowledge is limited in terms of the relevance of genetic variations across even a genus of poxviruses as well as fundamental features governing and precipitating intrinsic gene flow and recombination events.

13.
Transbound Emerg Dis ; 69(6): e3430-e3435, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36217254

RESUMO

This study investigates the phylogenomic relatedness between sheep pox viruses (SPPVs) circulating in Central Russia in 2018-2019 with the NISKHI vaccine strain used in the country, based on their complete genome sequences. The sheep pox outbreaks occurred 1 year apart in the adjacent regions of Tula and Moscow. Full genome sequences were generated by sequencing DNA directly obtained from Trizol-extracted scabs, using the DNBSEQ-400 platform (MGI Tech, China). Phylogenetic analysis indicated that the SPPV isolates from Russia clusters with previously published sequences from Srinagar in the Kashmir province of India in 2000 (SPPV-Srinagar strain) as well as SPPV A strain from Kazakhstan in 2000. The aforementioned cluster belonged to a sister clade containing the NISKHI vaccine strain, thus indicating that the recent outbreaks were not genetically linked to the widely used vaccine.


Assuntos
Capripoxvirus , Doenças das Cabras , Infecções por Poxviridae , Doenças dos Ovinos , Ovinos , Animais , Filogenia , Cabras , Surtos de Doenças/veterinária , Federação Russa/epidemiologia , Infecções por Poxviridae/epidemiologia , Infecções por Poxviridae/veterinária , Doenças dos Ovinos/epidemiologia , Doenças das Cabras/epidemiologia
14.
Pathogens ; 11(8)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36015040

RESUMO

African swine fever virus (ASFV), classified as genotype II, was introduced into Georgia in 2007, and from there, it spread quickly and extensively across the Caucasus to Russia, Europe and Asia. The molecular epidemiology and evolution of these isolates are predominantly investigated by means of phylogenetic analysis based on complete genome sequences. Since this is a costly and time-consuming endeavor, short genomic regions containing informative polymorphisms are pursued and utilized instead. In this study, sequences of the central variable region (CVR) located within the B602L gene were determined for 55 ASFV isolates submitted from 526 active African swine fever (ASF) outbreaks occurring in 23 different regions across the Russian Federation (RF) between 2013 and 2017. The new sequences were compared to previously published data available from Genbank, representing isolates from Europe and Asia. The sequences clustered into six distinct groups. Isolates from Estonia clustered into groups 3 and 4, whilst sequences from the RF were divided into the remaining four groups. Two of these groups (5 and 6) exclusively contained isolates from the RF, while group 2 included isolates from Russia as well as Chechnya, Georgia, Armenia, Azerbaijan and Ukraine. In contrast, group 1 was the largest, containing sequences from the RF, Europe and Asia, and was represented by the sequence from the first isolate in Georgia in 2007. Based on these results, it is recommended that the CVR sequences contain significant informative polymorphisms to be used as a marker for investigating the epidemiology and spread of genotype II ASFVs circulating in the RF, Europe and Asia.

15.
Arch Virol ; 167(10): 2063-2070, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35792935

RESUMO

The poxvirus lumpy skin disease virus (LSDV) is the causative agent of the vexatious lumpy skin disease, which predominantly affects cattle and water buffalo. It has been endemic to South Africa since the 1950s, and in 1960, a live attenuated vaccine was commercially released for use in the country to mitigate the spread of this transboundary disease. This vaccine (Neethling/vaccine/LW-1959) was generated from serial passages of the prototype lumpy skin disease virus strain Neethling-WC/RSA/1957, which was isolated in 1957 from an outbreak in the Western Cape province of South Africa and was subsequently used to prove the infectious nature of the virus and the resulting disease in cattle. In this study, we determined the complete genome sequence of the LSDV prototype strain Neethling-WC/RSA/1957, as well as three other LSDV isolates from the 1950s, one wild-type isolate from the 1970s, and a commercial vaccine produced in 1988 (LW-1959). Phylogenomic analysis showed that all six sequences were in cluster 1.1, along with previous sequences of the vaccine strain, the oldest known isolate (LSDV/Haden/RSA/1954), and virulent viruses isolated in the 1990s from South Africa. Seven single-nucleotide polymorphisms were identified between the Neethling-WC/RSA/1957 strain and the vaccine strain (LW-1959), providing new insights into virus attenuation and possible markers for DIVA assays.


Assuntos
Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Animais , Bovinos , Surtos de Doenças/veterinária , Doença Nodular Cutânea/epidemiologia , Filogenia , África do Sul , Vacinas Atenuadas
16.
BMC Genomics ; 23(1): 396, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610557

RESUMO

BACKGROUND: Since the first description of lumpy skin disease virus (LSDV) in Africa in the 1920's, it has brazenly spread beyond Africa into the Middle East, Europe and most recently Asia. In 2017 the first atypical LSDV recombinant strain was reported in Russia, composed of both a live-attenuated Neethling vaccine strain and Kenyan vaccine strain. An increase in LSDV research enabled a public release of numerous full genome sequences of unique recombinant LSDV strains from Kazakhstan, Russia, China and Vietnam. Prior to the recombinant strain first described in China in 2019, every new recombinant strain was genetically unique and each of these recombinants clustered in a monophyletic lineage. In this work, we provide the complete genome sequences of two novel recombinant strains of LSDV from Russia and attempt to gain more insight into genomic composition of all the recombinant strains currently available. This analysis will provide new insight into the global molecular epidemiology of LSDV. RESULTS: By sequencing and analyzing two novel recombinant strains Khabarovsk/2020 and Tomsk/2020, this study investigates the differences and similarities of all five the available recombinant LSDV lineages from different countries based on the SNPs inherited from the aforementioned parental strains. A total of seven recombinant strains: LSDV/Russia/Saratov/2017, LSDV/Russia/Udmurtya/2019, LSDV/KZ-Kostanay/Kazakhstan/2018, LSDV/Russia/Tyumen/2019, LSDV/GD01/China/2020 Khabarovsk/2020 and Tomsk/2020 were examined. It was observed that strains isolated prior to 2020 were composed of unique combinations of open reading frames, whilst from 2020 onwards all circulating strains in Russia and South-Eastern Asia belonged to a single lineage radiating out in the region. The first representative of this lineage is LSDV/GD01/China/2020. Interestingly, the other four unique recombinant strains as well as the newly established lineage, exhibit consistent patterns of targeted selection pointing to regions constantly selected for during the recombination-driven processes. CONCLUSION: This study highlights the inexplicable emergence of novel recombinant strains to be unique introductions of sibling viruses, with the most recent recombinant lineage establishing as the dominant strain across the south eastern Asian countries as evidenced by full genome sequence data. Overall, these findings indicate that LSDVs are subjected to accelerated evolutionary changes due to recombination in the face of homologous live attenuated vaccines as well as the slow genetic drift commonly observed in capripoxviruses curculatign in the field with hardly any genetic changes over decades.


Assuntos
Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Animais , Bovinos , Biologia Computacional , Surtos de Doenças , Quênia , Doença Nodular Cutânea/epidemiologia , Vírus da Doença Nodular Cutânea/genética , Filogenia , Vacinas Atenuadas
17.
Transbound Emerg Dis ; 69(5): e2312-e2317, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35488786

RESUMO

Lumpy skin disease virus causes a debilitating pox disease of domesticated cattle and water buffalos. In the last decade, LSDV has spread from Africa into the Middle East, Europe and most recently Asia. As of 2017, atypical outbreaks caused by novel LSDV strains were reported in Russia, followed by China and Vietnam between 2018 and 2020. In this work, we describe another unique recombinant LSDV strain recovered from Tyumen, Russia in 2019. Typing of the virus using currently available qPCR protocols produced inconclusive results and subsequently the complete genome of the isolate was determined. The consensus genome contained statistically significant signals of possible recombination events between parental strains KSGPO-240/Kenya/1958 and the live attenuated vaccine LW/1958. The novel strain carries 25 unique breakpoints different from the known recombinant strains. Additionally, the findings reiterate the importance of complete genome sequencing when analysing outbreak samples caused in particular by mosaic LSDV, in contrast to only performing specified qPCRs.


Assuntos
Doenças dos Bovinos , Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Surtos de Doenças/veterinária , Quênia , Doença Nodular Cutânea/epidemiologia , Doença Nodular Cutânea/prevenção & controle , Federação Russa/epidemiologia , Vacinas Atenuadas
18.
Transbound Emerg Dis ; 69(5): e3239-e3243, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35298087

RESUMO

Lumpy skin disease is an emerging transboundary infection demonstrating a great range expansion worldwide recently. With many knowledge gaps, there is a lack of understanding how lumpy skin disease virus (LSDV), including naturally occurring vaccine-like LSDV, is capable of surviving under different climatic conditions. In this study, we describe a recombinant vaccine-like LSDV from an outbreak in Saratov region of Russia in 2019, where the first recombinant Saratov/2017 was documented. Although the two isolates were two years apart, Saratov/2019 seems to be clonally derived from Saratov/2017 with accrual of mutations characteristic of circulating under selective conditions. The obtained findings demonstrate the persistence of LSDV during winter and successful overwintering in in cold climate, necessitating an objective need for deeper research into LSDV biology.


Assuntos
Doenças dos Bovinos , Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária , Doença Nodular Cutânea/epidemiologia , Doença Nodular Cutânea/prevenção & controle , Vírus da Doença Nodular Cutânea/genética , Federação Russa/epidemiologia , Estações do Ano
19.
Front Vet Sci ; 9: 1019808, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686186

RESUMO

Introduction: Since the first report of outbreaks of African swine fever (ASF) in Georgia in 2007, the disease has expanded into Europe, Russia, and Asia, spreading rapidly via contact with infected animals including domestic pigs and wild boars. The vast expansion of this Genotype II African swine fever virus (ASFV) across wide-ranging territories and hosts inevitably led to the acquisition of novel mutations. These mutations could be used to track the molecular epidemiology of ASFV, provided that they are unique to strains restricted within a certain area. Whilst whole-genome sequencing remains the gold standard for examining evolutionary changes, sequencing of a single locus with significant variation and resolution power could be used as a rapid and cost-effective alternative to characterize multiple isolates from a single or related outbreak. Material and methods: ASFVs obtained during active ASF outbreaks in the Russian region of Kaliningrad between 2017 and 2019 were examined. Since all of the viruses belonged to Genotype II and no clear differentiation based on central variable region (CVR) sequencing was observed, the whole-genome sequences of nine ASFV isolates from this region were determined. To obtain insights into the molecular evolution of these isolates, their sequences were compared to isolates from Europe, Asia, and Africa. Results: Phylogenetic analysis based on the whole-genome sequences clustered the new isolates as a sister lineage to isolates from Poland and Germany. This suggests a possible shared origin followed by the addition of novel mutations restricted to isolates from this region. This status as a sister lineage was mirrored when analyzing polymorphisms in MGF-505-5R and MGF-110-7L, whilst a polymorphism unique to sequences from Kaliningrad was identified at locus K145R. This newly identified mutation was able to distinguish the isolates obtained from Kaliningrad with sequences of Genotype II ASFVs available on GenBank. Discussion: The findings of this study suggest that ASFVs circulating in Kaliningrad have recently obtained this mutation providing an additional marker to the mutations previously described.

20.
Transbound Emerg Dis ; 69(4): e486-e496, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34555250

RESUMO

Research into the phylogenetic relationships of lumpy skin disease virus (LSDV) strains was long overlooked, partially due to its original restricted distribution to sub-Saharan Africa. However, recent incursions into northern latitudes, and a rapid spread causing major economic losses worldwide, have intensified additional research on the disease and the causative virus. This study delineates the phylogeny of LSDV in the context of full genome sequences of strains recovered in the field, as well as strains highly passaged in cell culture. We sequenced the oldest known field strain to date (isolate LSDV/Haden/RSA/1954 [South Africa] recovered from an outbreak in 1954), a recent field isolate (LSDV/280-KZN/RSA/2018 [South Africa] sequenced directly from blood during an outbreak in 2018) and strain LSDV/Russia/Dagestan-75 (a high-passaged cell culture strain derived from the field strain, LSDV/Russia/Dagestan/2015 [Russia]). Sequence analysis placed the field strain LSDV/Haden/RSA/1954 in the same cluster (cluster 1.1) with attenuated Neethling-type commercial vaccine viruses, with eight SNP differences, discrediting the previously held hypothesis that cluster 1.1 vaccine strains were derived from cluster 1.2 field viruses via the process of attenuation between them. In contrast, the recent LSDV/280-KZN/RSA/2018 isolate grouped with other recent field isolates in cluster 1.2, providing evidence that cluster 1.1 strains were displaced by cluster 1.2 strains in South Africa. Based on the field isolates between 1954 and 2018, the substitution rate of 7.4 × 10-6 substitutions/site/year was established, with mutations occurring in either synonymous sites or intergenic regions. This is the first evolutionary metric recorded for LSDV. Comparing the genome sequences of high-passage strains of LSDV showed that propagation in vitro without animal host selective pressure generates mainly non-synonymous SNPs in virus-replication genes. These results improve our understanding of LSDV evolution and demonstrate that the population dynamics of circulating isolates is not constant, with LSDV associated with different genetic clusters dominating the landscape during specific periods in time.


Assuntos
Doenças dos Bovinos , Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Surtos de Doenças , Filogenia , África do Sul/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...